Científicos del Institut Pasteur, organización de investigación socia de la Université Paris Cité, Inserm y el CNRS, en Francia, han descubierto que las neuronas hipotalámicas en un modelo animal detectan directamente variaciones en la actividad bacteriana y adaptan el apetito y la temperatura corporal, lo que demuestra que existe un diálogo directo entre la microbiota intestinal y el cerebro.

El intestino es el reservorio de bacterias más grande del cuerpo. Un creciente cuerpo de evidencia revela el grado de interdependencia entre los huéspedes y su microbiota intestinal y enfatiza la importancia del eje intestino-cerebro. Hasta ahora se sabía que los subproductos de la microbiota intestinal circulan en el torrente sanguíneo y regulan los procesos fisiológicos del huésped, incluida la inmunidad, el metabolismo y las funciones cerebrales.

Subproductos de la microbiota intestinal en sangre

Este nuevo descubrimiento, publicado en ‘Science’ demuestra que se produce un diálogo directo entre la microbiota intestinal y el cerebro, un descubrimiento que podría conducir a nuevos enfoques terapéuticos para abordar trastornos metabólicos como la diabetes y la obesidad.

Los científicos se centraron en el receptor NOD2 (dominio de oligomerización de nucleótidos) que se encuentra dentro de la mayoría de las células inmunitarias. Este receptor detecta la presencia de muropéptidos, que son los componentes básicos de la pared celular bacteriana. Además, previamente se ha establecido que las variantes del gen que codifica para el receptor NOD2 están asociadas con trastornos digestivos, incluida la enfermedad de Crohn, así como con enfermedades neurológicas y trastornos del estado de ánimo.

Usando técnicas de imagen cerebral, los científicos observaron inicialmente que el receptor NOD2 en ratones se expresa en neuronas en diferentes regiones del cerebro y, en particular, en una región conocida como hipotálamo. Posteriormente descubrieron que la actividad eléctrica de estas neuronas se suprime cuando entran en contacto con los muropéptidos bacterianos del intestino.

“Los muropéptidos en el intestino, la sangre y el cerebro se consideran marcadores de proliferación bacteriana”, explica Ivo G. Boneca, Jefe de Biología y Genética de la Unidad de Pared Celular Bacteriana del Institut Pasteur (CNRS/Inserm). Por el contrario, si el receptor NOD2 está ausente, estas neuronas ya no son suprimidas por los muropéptidos. En consecuencia, el cerebro pierde el control de la ingesta de alimentos y la temperatura corporal. Los ratones aumentan de peso y son más susceptibles a desarrollar diabetes tipo 2.

En este estudio, los científicos han demostrado el asombroso hecho de que las neuronas perciben directamente los muropéptidos bacterianos, mientras que se pensaba que esta tarea se asignaba principalmente a las células inmunitarias. “Es extraordinario descubrir que los fragmentos bacterianos actúan directamente sobre un centro cerebral tan estratégico como el hipotálamo, que se sabe que gestiona funciones vitales como la temperatura corporal, la reproducción, el hambre y la sed”, comenta Pierre-Marie Lledo, científico y director del CNRS de la Unidad de Percepción y Memoria del Institut Pasteur.

Actividad bacteriana

Por tanto, las neuronas parecen detectar la actividad bacteriana (proliferación y muerte) como un indicador directo del impacto de la ingesta de alimentos en el ecosistema intestinal. “ La ingesta excesiva de un alimento específico puede estimular el crecimiento desproporcionado de ciertas bacterias o patógenos, poniendo en peligro el equilibrio intestinal”, señala Gérard Eberl, Jefe de la Unidad de Microambiente e Inmunidad del Institut Pasteur (Inserm).

El impacto de los muropéptidos en las neuronas hipotalámicas y el metabolismo plantea dudas sobre su papel potencial en otras funciones cerebrales y puede ayudarnos a comprender el vínculo entre ciertas enfermedades cerebrales y las variantes genéticas de NOD2. Este descubrimiento allana el camino para nuevos proyectos interdisciplinarios en la frontera entre las neurociencias, la inmunología y la microbiología y, en última instancia, para nuevos enfoques terapéuticos para enfermedades cerebrales y trastornos metabólicos como la diabetes y la obesidad.